Data comes in various formats, and it’s not uncommon to need to convert between them. In this article, we’ll explore how to seamlessly convert data between JSON, CSV, and SQL formats using Python. Whether you’re a data analyst, engineer, or scientist, these skills are essential for efficiently working with diverse datasets.
Coverting JSON to SQL
- import pandas and sqlite3
- load data files
- create sqlite database
- store data in sql
import pandas as pd
import sqlite3
data = pd.read_json('file.json')
cn = sqlite3.connect(data.db)
data.to_sql('datatable', cn, if_exists='replace', index=False)
Coverting CSV to SQL
- import pandas and sqlite3
- load data files
- create sqlite database
- store data in sql
import pandas as pd
import sqlite3
data = pd.read_csv('file.csv')
cn = sqlite3.connect(data.db)
data.to_sql('datatable', cn, if_exists='replace', index=False)
Coverting SQL to JSON
- import pandas and sqlite3
- load data files
- create sqlite database
- store data in sql
import pandas as pd
import sqlite3
data = pd.read_json('file.json')
cn = sqlite3.connect(data.db)
data.to_sql('datatable', cn, if_exists='replace', index=False)
Coverting JSON to SQL
- import pandas and sqlite3
- load data files
- create sqlite database
- store data in sql
import pandas as pd
import sqlite3
data = pd.read_json('file.json')
cn = sqlite3.connect(data.db)
data.to_sql('datatable', cn, if_exists='replace', index=False)